Part family formation through fuzzy ART2 neural network
نویسندگان
چکیده
In order to overcome some unavoidable factors, like shift of the part, that influence the crisp neural networks’ recognition, the present study is dedicated in developing a novel fuzzy neural network (FNN), which integrates both the fuzzy set theory and adaptive resonance theory 2 (ART2) neural network for grouping the parts into several families based on the image captured from the vision sensor. The proposed network posses the fuzzy inputs as well as the fuzzy weights. The model evaluation results showed that the proposed fuzzy neural network is able to provide more accurate results compared to the fuzzy self-organizing feature maps (SOM) neural network [R.J. Kuo, S.S. Chi, P.W. Teng, Generalized part family formation through fuzzy selforganizing feature map neural network, International Journal of Computers in Industrial Engineering, 40 (2001b) 79–100] and fuzzy c-means algorithm. D 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Integration of ART2 Neural Network and Fuzzy Sets Theory for Market Segmentation
In order to simulate human beings’ thinking, this study is dedicated to proposing a novel fuzzy neural network (FNN) to cluster the fuzzy data being collected from the fuzzy questionnaires. The proposed FNN is the integration of adaptive resonance theory 2 (ART2) neural network and fuzzy sets theory. It can handle the fuzzy inputs as well as the fuzzy weights. A case study for mobile phone ma...
متن کاملImproving Classifications of Medical Data Based on Fuzzy ART2 Decision Trees
Analyzing given medical databases provide valuable references for classifying other patients symptoms. This study presents a strategy for discovering fuzzy decision trees from medical databases, in particular Harbeman’s Survival database and the Blood Transfusion Service Center database. Harbeman’s Survival database helps doctors treat and diagnose a group of patients who show similar past medi...
متن کاملNumerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کاملART2/BP Architecture for Adaptive Estimation of Dynamic Processes
The goal has been to construct a supervised artificial neural network that learns incrementally an unknown mapping. As a result a network consisting of a combination of ART2 and backpropagation is proposed and is called an "ART2/BP" network. The ART2 network is used to build and focus a supervised backpropagation network. The ART2/BP network has the advantage of being able to dynamically expand...
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Decision Support Systems
دوره 42 شماره
صفحات -
تاریخ انتشار 2006